Web Services

Develop Interface-Based
.NET Web Services

Building interface-based Web Services lets you switch between different
service providers with minimal or no changes to client code.

Technology Toolbox | As you well know from traditional component-

0 VB.NET
o c#
1 SOL Server 2000

oriented programming, separating the inter-
face from itsimplementation provides polymorphism
berween different implementations of the same ser-
vice. The separation recognizes the fact that the basic
unit of reuse in any application is the interface, not

by Juval Lowy

ent—to compensate for the lack of interface-based
Web Services in VS.NET, allowing you to develop
and consume interface-based Web Services. But first
I'll set up an example scenario.

Suppose you have a Web Service called Simple-
Calculator that provides the four basic arithmeric

(1 ASP .NET the object implementing it. You can apply this core operations—addition, subtraction, division, and
O XML principle of component-oriented pro-
gramming to Web Service develop-
1 VB6 ment as well.
¥ Other: In this case, the interface is a logical > it
Visual Studio .NET grouping of method signarures tharact _@
beta 2 or later as the contract berween the client and | webForm [WebSeHice
Windows 2000 or the Web Service provider. You can ey
E‘:i&ig:“rs XP beta 2 then switch between different provid- @
ers with minimal or no changes to the Copeney: | Dediany
client code because the client is written
against an abstract service definition | = =
(the interface) rather than a particular | b Framesst
service implementation. -
The Web Services standard sup- A
. . ICaleulatar
ports interfaces (referring to them as
ports). Bur by default, Web Services
support in NET is method-based, not L EE
interface-based. So VS.NET, as it ex- Figure 1 Expose an Interface Definition. To expose a Web
ists today, doesn’tinherentyallowyou Service interface definition, add a new Web Service item and
Resources to develop interface-based Web Ser- give it an interface name. Clicking on the Open button causes

VS.NET to create a skeletal Web Service. From there, remove all
the implementation code from the wizard-generated code.

vices. I'll show you the simple steps
required—both on the server and cli-

MSDN for Visual Studio .NET

64 VISUAL STUDIO MAGAZINE * OCTOBER 2001 * www.vbpj.com ¢ www.vedj.com

multiplication—and a client that consumes
the Web Service. You implement the Simple-
Calculator Web Service in NET using C# (see
Listing 1).

Simply add the [WebMethod] attribute
to the methods you want to expose as Web
Services—Add(), Subtract(), Divide(), and
Multiply()—and .NET does the rest. Note
that having WebService as a base class is
optional; deriving from it gives you easy ac-
cess to common ASP NET objects, such as
those for application and session states. You
don’t need these objects in this use-case. Also
optional is the WebService attribute, but I
strongly recommend you use it.

The WebService attribute lets you specify a
Web namespace that contains your service,
which you can use as you would a normal
NET namespace to reduce name collusion. If
you don’t specify a namespace, VS.NET uses
http://tempuri.org/ as a default. A published
service usually uses a specific Uniform Re-
source Identifier (URI) as its namespace, typi-
cally the service provider company’s name.
The WebService attribute also allows you to
provide a free-text description of your service
that appears in the auto-generated browser
page used by Web Service consumers and
during development.

Writing the client code is almost equally
trivial. Select Add Web Reference... from the
client’s project in VS.NET and point the wiz-
ard at the site containing the Web Service
ASPX file. This makes VS.NET generate a
wrapper class—called SimpleCalculator—that
the client will use (see Listing 2). The Simple-
Calculator wrapper class has all the methods
the Web Service developer applied [Web-
Method] to as public methods. The wrapper
class (sometimes called a “Web Service Proxy”
class) encapsulates completely the complex
interaction with the remote object. The wrap-
per class is also the only entity coupled to the
service’s location—its base class, SoapHttp-
ClientProtocol, has a property called Url that
points to the object’s location.

The client code uses the wrapper class as
if the SimpleCalculator object were a local
object:

SimpieCalculator calculator;
calculator = new SimpleCalculator();
int result = calculator.Add(2,3);
Debug.Assertiresult == 5);

Clearly, VS.NET makes invoking Web methods trivial.

Visual{++

C# < ItAll Adds Up With the SimpleCalculator Class 7Y

[WebSeryice(
Namespace=
"http://CalculationServices.com”,
Description = "The SimpleCalculator Web Service provides the four
basic arithmetic operations for integers,")]
public class SimpleCalculator: WebService
|
public SimpleCalculator()f!}
[WebMethod]
public int Add(int numl,int num2)
(
return numl + nume;
}
[WebMethad]
public int Subtract{int numl.int num2)
{
return numl
|
[WebMethod]
public int Divide(int numl,int num2)
{
return numl / num2;
]
[WebMethod]
public int Multiply(int numl,int num2)
{
return numl * numé;
|
|

- numé;

Listing 1 To expose a class method as a Web Service, simply add the [WebMethod]
attribute. Note that deriving from WebService is optional. Using the [WebService]
attribute is optional also, but you should use it to provide a service description and
containing namespace.

i 7 C# e Encapsulate the Interaction)

public class SimpleCalculator : SoapHttpClientProtocol
[
public SimpleCalculator()
{
Url = "http://www.CalculationServices.com/SimpleCalculator.asmx”;

[SoapDocumentMethod{ "http://CalculationServices.com/Add")]
public int Add(int numl,int num2)
{
object[] results = Invoke("Add", new object[1{numl,num2});
return (int)(results[0]);
)
/1 Other method wrappers
!

Listing 2 The SimpleCalculator Web Service wrapper class—generated for the Web
Service shown in Listing 1—encapsulates the interaction with the Web Service
completely and shields the client from the details. It contains the service location in
the public Url property, which is defined in the SoapHttpClientProtocol base class.

in this case) instead of against a generic abstraction of such a service.
You want the SimpleCalculator Web Service polymorphic with a
service abstraction—an interface.

For example, imagine the client wants to switch from the
SimpleCalculator to a different calculator Web Service, called

But you have a problem: The client ends up programming ScientificCalculator. ScientificCalculator supports the same inter-

directly against the “object” providing the service (SimpleCalculator

VISUAL STUDIO MAGAZINE ¢ OCTOBER 2001

* www.vbpj.com

face as SimpleCalculator, but it’s perhaps faster, cheaper, or more

* www.vedj.com 65

Web Services)

Visuag!-l"l'

&

accurate. You'd like to define a generic calculator

C# e Prepare for a Service Provider Change 72

interface, the ICalculator interface, and expose it as
Web Service:

// Imaginary attribute.
// Does not exist in .NET
[WebInterface]

interface ICalculator

[

/1 oor

int Add{int numl,int numz2);

int Subtract(int numl,int numZ);
int Divide(int numl,int numa};
int Multipiy(int numl,int numz);

) Debug.Assert{result == 5);

/{ Somewhere in the client code, it
/{ decides on the service provider:
ICalculator calculator = (ICalculatar) new ScientificCalculator();

ICalculator calculator = (ICalculator) new SimpleCalculator():

// This part of the client code is
/1 polymorphic with any provider of the service:

int result = calculator.Add(2,3);

Assuming you could do that (I'll show you how
shortly), you can code against only the interface
definition instead of a particular implementation of
it (see Listing 3).

The only thing that changes in the client’s code when it switches
between service providers is the line that decides the exact interface
implementation to use. You can even put that decision in a different
assembly than the “main” client’s logic, and you can only pass
interfaces between the two. Another benefit you can reap from
interface-based Web Services: The client can publish the interface
definition, enabling different service vendors to implement the
client’s requirements more easily.

Now you're ready to write the server and client code to work
around VS.NET’s lack of support for interface-based Web Services.

Define and Implement a Web Interface
To enable an interface-based Web Service, first expose the Web
Service interface definition. For simplicity’s sake, assume the
service provider is responsible for both defining and implement-
ing the interface (the client or any third party can expose the
interface definition and have anybody implement it, but it re-
quires additional steps).

Create a new Web Service project called CalculationServices.
Right-click on the project and select Add Web Service... . In the
Add New Item dialog, type “ICalculator” as the interface name and
click on Open (see Figure 1).

VS.NET then creates a skeletal Web Service called ICalculator.
Open the ICalculator.asmx.cs file and change the ICalculator type
definition from “class” to “interface.” Remove the derivation from
System.Web.Services. WebService, as well. An interface, by defini-
tion, has no implementation code—remove the constructorand the
InitializeComponent() and Dispose() methods. Finally, remove the
commented HelloWorld() method example.

Next, add the interface methods—Add(), Subtract(), Divide(),
and Multiply(). Although in principle you could simply apply the
[WebMethod] attribute to each interface method to expose the
interface as a Web Service definition, you shouldn’t in practice
because of the [WebService] attribute. This attribute applies only to
classes, and it’s sealed—you can’t subclass it or change it. So you can’t
assign a namespace and a description to the interface, which I advised
you 1o do earlier. To clear this hurdle, you must provide an interface
“shim”—an abstract class that exposes what looks like a pure interface

66 VISUAL STUDIO MAGAZINE

Listing 3 Ideally, you want your calculator Web Services polymorphic with a
service abstraction—an interface. You can then switch between service providers
with minimal or no changes to the client code.

¥ S.NET, as it
exists today,
doesn’t inherently
allow you to
develop interface-
based Web
Services.

definition. In the ICalculator.asmx.cs file, add the ICalculatorShim
pure abstract class definition:

[WebService(

Name = "ICalculator", Namespace=
“http://CalculationServices.com",

Description = "This Web Service is only the definition of
the interface. You cannot invoke method calls on it."})]
abstract class ICalculatorShim : ICalculator
[

abstract public int

Add(int numl,int num2);

abstract public int
Subtract(int numl,int num2};

abstract public int
Divide(int numl,int num2}:

abstract public int

OCTOBER 2001 * www.vbpj.com * www.vedj.com

Web Servicesj;e

Multiply(int numl,int numé):
|

Note that because ICalculatorShim is a class, you can use the
[WebService] attribute to provide a namespace and description. In
addition, you set the Name property of the [WebService] attribute
to ICalculator to expose the service definition as ICalculator instead
of ICalculatorShim.

You're interested in exposing only the signatures, so you
don’t need the implementation code. Because you're using an
abstract class and abstract methods, VS.NET insists that the
ICalculatorShim Web Service have no implementation code—
only a service definition.

To verify that all is well so far, set the ICalculator.asmx file as the
start page and run the project; the auto-generated browser page
presents the ICalculator interface definition. If you try to invoke any
of the methods, you should get an error because there’s no imple-
mentation behind the service.

Next, implement the ICalculator interface on a Web Service
class. This is like implementing any other interface in NET—your
Web Service class should inherit from the interface and provide the
implementation for its methods. In this example, provide two class
implementations: the SimpleCalculator and the ScientificCalculator
Web Services (download Listing 4 from the VSM Web site; see the
Go Online box for details).

Discover CodeBase, the fastest database engine on
the market that's also fully xBASE compatible.
Query a million-record table in 0.34 seconds, or read
300,000 records in just 0.59 seconds. It's lightning quick!

ADO/ODBC Support!
This application was
created without a single
line of source code! Use
native and 3rd party
controls with our new
ADO/OLE-DB and
ODBC support.
Creating database
programs has never
been easier!

¥ Multi-user file compatible with FoxPro, Clipper and dBASE
W Client/Server, multi-user & single user support included

W Small DLL loads quickly, simply and use few resources

W 100% Portable:Windows, Pocket PC etc. 32 & 64 bit
VSupportsVB. C, C++, Delphi, Java etc.
V Reader's Choice Award for 5 Years
VRoyaIty Free Distribution ;

SEQUITER“II"
SOFTWARE INC.

www.sequiter.com - info@sequiter.com Fax:

Phone:(780) 437-2410
(780) 436-2999

68 VISUAL STUDIO MAGAZINE * OCTOBER 2001

Use the Add Web Service... context-menu item again to add
the two Web Services. Add a derivation (inheritance) from the
ICalculator interface (you can remove the derivation from the
WebService base class—it bears no relevance to interface-based
Web Services). Add the implementation to the Add(), Subtract(),
Divide(), and Multiply() interface methods. You must provide the
[WebMethod] attributes for the interface methods you want to
expose as Web Services. Without [WebMethod] on a class imple-
mentation method, NET won’t expose the method as part of the

Web Service.

Write the Client-Side Code

The client needs to add a reference to the type definitions of the
interface and the classes implementing it. You can add the interface
reference in one of two ways. The first uses the WSDL.exe com-
mand-line utility, Using the /server switch, you can instruct
WSDL.exe to generate a pure abstract class matching the Web
Service definition. Assuming the interface definition resides at
htep://www.CalculationServices.com/ICalculator.asmx, run the
utility with this command line:

WSDL.exe /server /out: ICalculaztorDef.cs
http://www.CalculationServices.com/ICalculator.asmx

Then add the ICalculatorDef.cs source file to the client project.
Unfortunately, even though .NET knows about interfaces, the
/server switch generates a pure abstract class with abstract methods:
public abstract class ICalculator : WebService
|

[WebMethod]

[SoapDocumentMethodAttributel("http://
CalculationServices.com/Add"]

public abstract int Add(int numl, int num2):

// rest of the ICalculator methods

But what you need is an interface definition. Open the
ICalculatorDef.cs file, remove the WebService base class, and
change the ICalculator definition from abstract class to interface.
Removeall the ateributes (on ICalculator and its methods) and the
public and abstract modifiers from all the methods. You should
now have the original interface definition,

The second way a client can import the interface definition: Add
a Web reference to the ICalculator Web Service, then extract the
interface methods from the wrapper class. To do so, point the Add
Web Reference... wizard ro the site containing the interface defini-
tion. This generates a wrapper class called ICalculator, which
exposes the original ICalculator’s methods as well as a Web Service
wrapper class's other methods. You need only method definitions
for an interface, so remove all the interface method bodies and the
other methods completely, including the construcror. Remove the
SoapClientProtocol base class and the “public” modifier on the
interface method. Remove all class and method arttributes. Lastly,
change the ICalculator definition from “class” to “interface.” Essen-
tially, the client should now have the original interface definition.

Next, the client mustadd a Web reference to the Web Services
that provide the interface’s implementation. Again, using the Add

* www.vbpjcom ¢ www.vecdj.com

V!sual‘**

Web Reference... wizard, point the wizard to where those imple-
mentations reside. VS.NET generates wrapper classes for those Juval Lowy is a seasoned software architectand
implementations—SimpleCalculator and ScientificCalculator, in the principal of IDesign, a consulting company
this cxamplc. These machine-gcncrated wrapper classes won't focused on COM/.NET design. Juval also con-
mention ICalculator. To provide polymorphism with ICalculator, ducts training classes and gives conference talks
add a derivation from it. The SimpleCalculator and Scientific- oncomponent-oriented design and development.
Calculator classes should now look like those in Listing 5, which ~ He wrote the book COM and .NET Component
you can download. Services — Mastering COM+ (O'Reilly). Reach

Here's the client-side design pattern: ICalculator provides the him through www.componentware.net.
service definirion. The Web Service’s loca-
tion is decided at the derived SimpleCal-
culator or ScientificCalculator classes. The
wrapper classes know how to forward the
calls ro the Web Service, but not how it's
implemented on the server side. In fact, all
that distinguishes SimpleCalculator from
ScientificCalculator is the encapsulated ser-
vice location or provider,

Finally, you can now write interface-
based, polymorphic Web Services code (see

for C/C++
iy Bug of the Month
Lint 8.0 frst

Listing 3). You can also make an interesting

observation: From the client’s perspective in #inclide <stdio.hs

the Web Services world, the location of the

service—the URL—is the object. struct { int a[3], b; } wll = { {1, 2,3}, 2 }y
Web Services will become part of almost

every developer’s career in the next few int main()

years. However, the supporting tools are {

immature compared to existing design meth- printf("w[0].b = %d\n”, w[0].b);

odologies and component-oriented tech- return 0;

nologies you’ve grown accustomed to in the }

intranet world. Today's challenge is how to

combine the two. I hope this article con-

vinces you not to give up on proven and The programmer expected to print the value ‘2". Instead he got '0". Why?

elegant concepts just because VS.NET Call if you need a hint or visit our web site at www .gimpel.com

doesn’t support them. With a bit of tweak-

ing and the proper observation that a URL ; :

i PC-lint for C/C++ will catch this and many Plus Our Traditional C/C++ Warnings:
equals an GbJ‘;‘Cf, you can e IUPIC'}’ estab- other bugs. It will analyze a mixed suite of C Uninitialized variables, inherited non-virtual
lished concepts in a brave new world. vsm and C++ modules to uncover bugs, glitches, destructors, strong type mismatches,

quirks and inconsistencies, ill-formed macros, inadvertent name-hiding,
/ \ Not your Grandpa’s lint: PC-lint has ::ITCID“S EKPW;SIOHS- mf; a;NS
- introduced several spectacular and revolutionary Language Support for ISO
Go Online 'i_lgnovaxitins imm oilstatic program unalysisé. C and C++.
aking clues from initializers, assignments, an PC-lint for C/C++ $239
Use these DevX Locator+ codes at mﬁ‘;"zﬂ:}’ﬂ‘;”me andor:mt;:ﬁzlal&a; Numerous{ompi]ers! libraries su gmned.
www.vbpj.com or www.vcdj.com to null poi'ntcrs am:l8 out-of-bounds subscripts. Runs on \'fﬁndnws, MS-DOS, s
godirectly to these related resources. New with Version 8: Interfunction vuluid kaf;%ggopﬁggr .
VS0110 Downloadallthe code forthis Packis - Adksl mpmias s LS . systema Jie o al Um“"syw’“mm& VMS,
issue of VSM. a multi-pass operation (you control the number mainframtgs. mcgs;nbuted in shrouded
VS0110WS Download the code for of passes) allows you to plumb the depths of Csource form, Call for pricing,
this article separately. This article’s function behavior to arbitrary levels. 30 Day Money Back Guarantee
code includes a basic, non-interface— ﬁ [] S ﬁw
based Web Service; two interface- G m p@ @ @! T@
based \Web Sgr\rices; a testclient that Serving the C/C++ Community for 15 Years.
uses them all; and Listings 4 and 5. 3207 Hogarth Lane, Collegeville, PA 19426
VS0110WS_T Read thisarticle online. CALL TODAY (610) 584-4261 Or FAX (610) 584-4266
DevX Premier Club membership is www.gimpel.com
requi red. PA udd 6% sales tax, PC-lint and FlexeLint are trademarks of Gimpel Software
Want to subscribe to the Premier
Club? Go to www.devx.com.

VISUAL STUDIO MAGAZINE OCTOBER 2001 * www.vbpj.com ¢ www.vcdj.com 69

	Visual Studio Oct 01 VOL 11 NO 12 Page 1.pdf (p.1)
	Visual Studio Oct 01 VOL 11 NO 12 Page 2.pdf (p.2)
	Visual Studio Oct 01 VOL 11 NO 12 Page 3.pdf (p.3)
	Visual Studio Oct 01 VOL 11 NO 12 Page 4.pdf (p.4)
	Visual Studio Oct 01 VOL 11 NO 12 Page 5.pdf (p.5)

